Integrated Rate Law Kinetics

Ellie Zheng

Reaction of Crystal Violet with NaOH

$$Cl^{-} + Na^{+} + OH^{-} + H_{3}C \underbrace{N^{-}CH_{3}}_{N^{-}CH_{3}} + Cl^{-} + Na^{+}$$

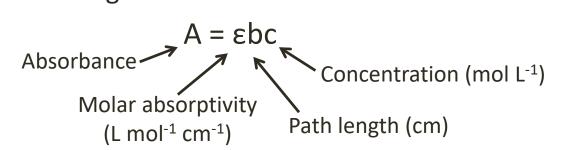
$$Cl^{-} + Na^{+} + OH^{-} + Cl^{-} + Na^{+}$$

$$CH_{3} \underbrace{CH_{3}}_{CH_{3}} \underbrace{CH_{3}}_{CH_{3}} \underbrace{CH_{3}}_{CH_{3}} \underbrace{CH_{3}}_{CH_{3}}$$

$$Violet-colored$$

$$Colorless$$

Crystal Violet – contains three six-membered rings with alternating double and single bonds. C. V. has extended resonance.


Molecules that are highly conjugated or in resonance tend to form **colored** solutions because they absorb visible light.

Disruption of the conjugation of C.V. by NaOH produces a **colorless** species.

We can monitor this reaction by UV-Vis spectroscopy.

UV-Vis Spectroscopy

- Instrument that measures the Absorbance (A) of light by a solution
- By measuring the absorbance of a species, we can find its concentration using Beer's Law:

 Molar absorptivity and path length are constants for each experiment; therefore, A(Abs) and c are directly proportional to one another.

Rate Law Equations

 The Rate of reaction for A + B ← C can be expressed by the following equations:

Rate =
$$k[A]^m[B]^n$$
 & Rate = $-\Delta[A]/\Delta t$

where m&n is called the "order of reaction" with respect to A or B

Zero Order

$$Rate = -\frac{\Delta A}{\Delta t} = k[A]^{0}[B]^{Y}$$

$$\int_{[A]_{o}}^{[A]} \Delta A = \int_{0}^{t} -k[B]^{Y} \Delta t$$

$$[A] - [A]_{o} = -k[B]^{Y} (t - 0)$$

$$[A] = -k[B]^{Y} t + [A]_{o}$$

$$\frac{First\ Order}{Rate = -\frac{\Delta A}{\Delta t}} = k[A]^{1}[B]^{Y}$$

$$\frac{\Delta[A]}{[A]} = -k[B]^{Y} \Delta t$$

$$\int_{[A]_{o}}^{[A]} \frac{\Delta[A]}{[A]^{1}} = \int_{0}^{t} -k[B]^{Y} \Delta t$$

$$\int_{[A]_{o}}^{[A]} \ln[A] = \int_{0}^{t} -k[B]^{Y} t$$

$$\ln[A] - \ln[A]_{o} = -k[B]^{Y} t + \ln[A]_{o}$$

$$\frac{Second\ Order}{Rate = -\frac{\Delta A}{\Delta t} = k[A]^{2}[B]^{Y}}$$

$$\int_{[A]_{o}}^{[A]} -\frac{\Delta[A]}{[A]^{2}} = \int_{0}^{t} k[B]^{Y} \Delta t$$

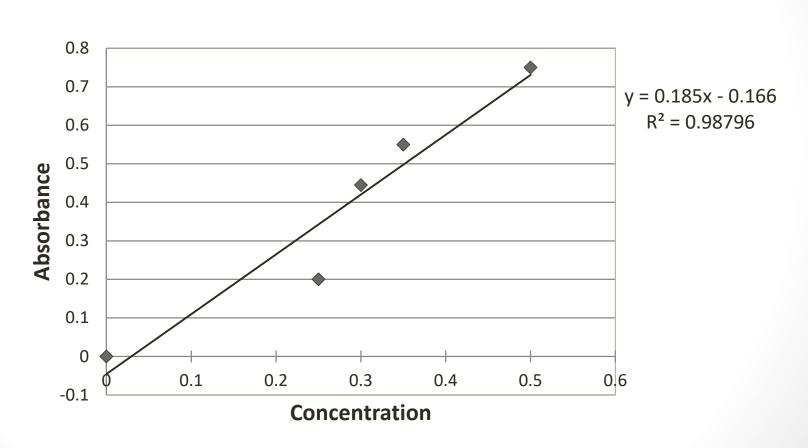
$$\int_{[A]_{o}}^{[A]} \frac{1}{[A]} = \int_{0}^{t} k[B]^{Y} t$$

$$\frac{1}{[A]} - \frac{1}{[A]_{o}} = k[B]^{Y} t$$

$$\frac{1}{[A]} = k[B]^{Y} t + \frac{1}{[A]_{o}}$$

Integrated Rate Laws

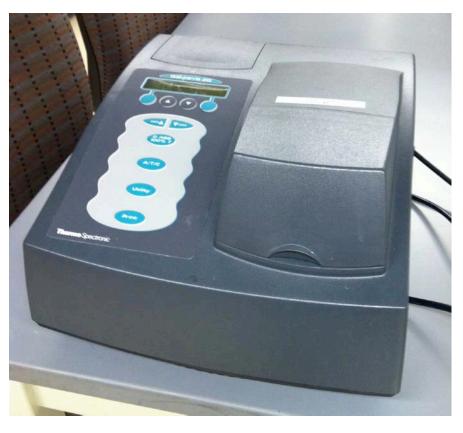
Order	Integrated Rate Law Equations	y vs. x
Zero, m = 0	$[A] = -k[B]^n t + [A]_o$	[A] vs. t
First, m = 1	$ln [A] = -k[B]^n t + ln [A]_o$	ln [A] vs. t
Second, m = 2	$\frac{1}{[A]} = k[B]^n t + \frac{1}{[A]_o}$	1/[A] vs. t


- All equations are written in the form y = mx + b
- The order of the reaction with respect to "A" (here A = Crystal Violet) can be found by plotting [A], In [A], or 1/[A] versus t (time);
- The equation that provides a linear slope is evidence of the order of the reaction

Goals for Experiment: [C.V.]&t

- 1. Make a calibration curve for Crystal Violet:
 - Prepare 3 C.V. solutions of different concentration([C.V.])
 - Measure the absorbance (A) of 4 C.V. solutions
 - Draw calibration curve: <u>Abs</u> v. [C.V.]
- 2. Determine the Order of Reaction with respect to C. V.:
 - Follow the reaction using the spectrophotometer by recording the absorbance (<u>Abs</u>) of C.V. every 10 seconds for 2 min (<u>t</u>).
 - Repeat twice (perform a total of 3 times)
- 3. <u>Determine the Order of Reaction with respect to NaOH:</u>
 - The same way as in goal #2, except with a different concentration of NaOH.

Calibration Curve


Beer's Law Plot: Absorbance vs Concentration

Experimental Details

- Preparing C.V. stock solutions using one 10.0 mL volumetric flask
 - Use LESS THAN 20 mL of 8 x 10⁻⁶ M C.V. in total
 - Solvent: 5% EtOH/H₂O
 - Put the prepared solution in a cuvette; rinse the flask thoroughly; then move on to next preparation
- Transferring solutions using graduated pipets
 - Rinse with solutions for 3 times
 - Don't draw solutions into the bulb
- Syringes:
 - get rid of bubbles at the tip first

Spectrophotometers

- "cuvette": 13 x 100 mm test tube
- Blank the spectrophotometer between each trial
 - 5% EtOH H₂O for part 1 (calibration curve)
 - 0.050 M NaOH for part 2 (order for CV)
 - 0.025 M NaOH for part 3 (order for NaOH)

Contamination Prevention

- Rinse glassware several times with DI water and EtOH/H₂O
- HCl & NaOH will react with Crystal Violet!
- Use new cuvettes (don't need to rinse)
- <u>label</u> graduated pipets, beakers and cuvettes
- Use your own beakers to get solutions.
 Never put your graduated pipets into public solutions!

Safety & Waste

Waste

- Keep a labeled Waste beaker in your hood.
- Dispose of waste solutions in the liquid waste container.
- Dispose of syringes in the solid waste.

Safety

- Wear safety glasses and gloves at all times!
- NaOH and Crystal Violet are eye irritants.
 Crystal Violet can stain your skin or clothes.

Clean up

 Return cleaned 10.0 mL volumetric flasks to front hood at the end of the period

- Czar duty: Hood# 4&5
 - Wipe down hoods and sashes

Reminders

 Notebook pages are due Dec 2nd (Mon) at 1:25 PM to the drop box.

- Last day to turn in Assignments: Dec 2nd (Mon)
- Last day to report mistakes on Sakai: Dec 9th (Mon)